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Multiphase flow is of important to a variety of processes in natural 

and engineered porous media with complex heterogeneous features; 

including interactions among matters such as water, air, and oil. In 

fluid mechanics/dynamics, multiphase flow is simultaneous flow of 

materials with different states or phases (i.e. gas, liquid or solid), or 

materials with different chemical properties but in the same state 

or phase (i.e. liquid-liquid systems). A persistent theme throughout 

the study of multiphase flows is the need to model and predict the 

detailed behavior of those flows and the phenomena that they 

manifest. The latest developments combine a powerhouse of 

theoretical, ana- lytical, and numerical methods to create stronger 

verification and validation modeling methods. There are three ways 

in which such models are explored: 
 

• experimentally, through equipped laboratory-sized models, 

• theoretically, using mathematical equations, 

• computationally or numerically, exploiting the power of 

computers to study the complexity of the flow. 
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1. INTRODUCTION 
 

 
The multiphase flow is used to refer to any fluid flow consisting of more than one phase or compo- 

nent; here we exclude those circumstances in which the components are well mixed above the molecular level. 

This still leaves an enormous spectrum of different multiphase flows. One could classify them according to the 

state of the different phases or components and therefore refer to gas/solid or liquid/solid or gas/particle flows 

or bubbly flows, etc...  Some treatises are defined in terms of a specific type of fluid flow and deal with low 

Reynolds number suspension flows or dusty gas dynamics. We attempt to identify the basic fluid mechanical 

phenomena and to illustrate them with examples from a broad range of applications and types of flow. 

The general multiphase flow topologies can be identified at the outset, namely disperse flows that are consisting 

of finite particles, drops or bubbles distributed in a connected volume of the continuous phase; and separated 

flows which consist of two or more continuous streams of different fluids separated by interfaces. 

This subject encompasses a vast field, a host of different technological contexts, a broad range of engineer- 

ing disciplines and a multitude of different analytical approaches.  The aim of the present paper is to try to 

bring much of this fundamental understanding and to present a unifying approach to the fundamental ideas of 

multiphase flows, together with different applications. 
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2. APPLICATION 1: GAS-OIL

We develop a simplified formulation of the hydrocarbon system used for the petroleum reservoirs
simulation. This system is a model of a ”system of parabolic degenerated non linear convection-diffusion”
equations, which describes a two-phase flow (oil and gas) with a mass transfer in a porous medium, that leads
to the fluid compressibility. Under certrain hypothesis, such as validity of Darcy’s law, incompressibility of the
porous medium, compressibility of the fluids, mass transfer between the oil and the gas and negligible gravity,
the global pressure is formulated, due to G. Chavent, 1976 (see [5] and references therein). This formulation
allows to establish theoretical results on the existence and uniqueness of the solution.

2.1. Mathematical Model
Let Ω be a bounded connected open domain of Rd with d = 2 or 3, describing the porous medium (the
reservoir), with a Lipchitz boundary Γ, t ∈ [0, T ]. We consider a system of PDEs of parabolic convection-
diffusion type

φ(x)
∂

∂t
(ρoω

h
oSo) + div(ρoω

h
oUo) = 0, (1)

φ(x)
∂

∂t
(ρgSg + ρoω

l
oSo) + div(ρgUg + ρoω

l
oUo) = 0, (2)

Uo = −K(x)
kro
µo
∇Po, (3)

Ug = −K(x)
krg
µg
∇Pg, (4)

where Si, Ui, Pi, ρi, µi and kri denote respectively, the saturation, the velocity, the pressure, the density, the
viscosity and the relative permeability of the phase i = o (oil), g (gas), while the functions φ(x) and K(x)
are the porosity and the absolute permeability of the medium and ωco (c = h or l) is the massic fraction of
component c, denoted by h for the heavy component and by l for the light one in the oil phase.
We suppose that it is a saturated regime and is expressed by

So + Sg = 1. (5)

The capillary pressure is given by

Pg − Po = Pc(S0) = pc(So)pcM , (6)

where
pcM = sup |Pc(So)| , 0 ≤ pc(So) ≤ 1. (7)

We define the mobility of each phase by

λi =
kri
µi
, i = o, g (8)

and the total mobility λ by
λ = λo + λg. (9)

2.1.1. Reduced Saturation
For simplicity, we set

ρho = ρoω
h
o , ρ = ρg + ρo, b = ρgλg + ρoλo, d = ρg − ρo (10)

Let us define by Si,m, the residual saturation of the fluid i = o, g; we write

Si,m ≤ Si

i,M ,the maximum saturation of the fluid i = o, g, such that

Sg,M = 1− So,m, So,M = 1− Sg,m (12)
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Si,m ≤ Si ≤ Si,M , i = o, g (13)

This leads to the so-called reduced saturation S set as

S =
So − So,m

1− Sg,m − So,m
, 0 ≤ S ≤ 1. (14)

2.1.2. Global pressure
If S = 0, equation (1) disappears. This is one of the main reasons for which the terminology of the “global
pressure” was introduced to be

P =
1

2
(Pg + Po) + γ (S) (15)

γ (S) =
1

2

S∫
So,m

λg − λo
λ

p′c (ξ) pcMdξ (16)

The total velocity is given by: U = Ug + Uo so we can write

γ(S) =

S∫
0

α (ξ) dξ (17)

α (S) =
λg (S)− λo (S)

λ (S)
p′c (S) pcM . (18)

α (S) is the capillary diffusion.

2.1.3. Boundary and initial conditions
We suppose that the reservoir’s boundary is not permeable, we write{

U.η = 0, on Γ× (0, T ) ,
α(S)∇S = 0, on Γ× (0, T ) ,

(19)

where η denotes the normal vector. The initial conditions are set as

S (x, 0) = S0 (x) , P (x, 0) = P 0 (x) in Ω. (20)

Therefore, we write system ((1)− (4)) in the following form

Φ(x) ∂∂t
(
ρhoS

)
− div

(
K(x)ρhoλo(S)∇P

)
+

+ div
(
K(x)ρhoα(S)∇S

)
= f1

Φ(x) ∂∂t (ρS)− div(K(x)b(S, P )∇P )+
+ div (K(x)d (P )α(S)∇S) = f2

∇P.η = 0, α(S)∇S = 0, on Γ× (0, T )
S (x, 0) = S0 (x) , P (x, 0) = P 0 (x) in Ω

(PB)

with f1 = −φ(x)So,m
∂
∂t

(
ρho
)

and f2 = −φ(x) ∂∂t (ρSo,m + ρg) .
We have introduced a simplified formulation of the Hydrocarbon system where the unknowns are the reduced
saturation S of one of the fluids and the global pressure P . This formulation transform the system to a coupled
degenerate non linear parabolic system of elliptic equations. Hence we prove the existence and uniqueness of
the solution of the resulting system, details can be found in [15] and numerical results in [16].

Mutiphase Flows (F.Z. Nouri)
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3. HYDROGEOLOGY: SURFASIC AND UNDERGROUND FLOWS

Recently coupling surfacic and underground flows has attracted many researchers mathematically and
numerically. For, we consider models coupling Navier-Stokes and Darcy equations with a numerical approach
linking the dicontinous-Galerkin method [8] and [20] and the a Posteriori Error Analysis [21].
We consider our problem on a bounded domain such that

Figure 1. Coupling domain

3.1. Mathematical Model
We consider a bounded domain Ω = Ω1 ∪ Ω2,as in Figure 1 and write −∇.(2νD(u1)− p1I) + u1.∇u1 = f1 in Ω1

∇.u1 = 0 in Ω1

u1 = 0 on Γ1

(21)

with the strain tensor D(u1) = 1
2

(
∇u1 +∇Tu1

)
and a viscosity ν > 0.

−∇.K∇p2 = f2 in Ω2

−K∇p2 = u2 in Ω2

p2 = gD on Γ2D

K∇p2.n2 = gN on Γ2N

(22)


u1.n12 = −u2.n12

((−2νD(u1) + p1I)n12).n12 +
1

2
(u1.u1) = p2

u1.τ12 = −2νG(D(u1)n12).τ12

(23)

where u and p are the velocity and the pressure in part of the domain respectively.
The existence and uniqueness of the solution has been proved in [3].

3.1.1. Discrete Problem
To discretise ((21)-(23)), we use a finite element scheme. Let us consider a regular family of triangulations of
Ω, denoted by εh, subdivided into elements E of diameter h, where E is a triangle in d = 2 or a tetrahedron in
d = 3. We assume that all vertices of Γ12 and ∂Ω are vertices of εh and we assume that all segments of Γ12 are
composed of segments of εh. For i = 1, 2, let εhi be the restriction of εh to Ωi which is also a regular family of
triangulations of Ωi. It has to be noted that the two meshes coincide at the interface Γ12.
If one edge (d = 2) or face (d = 3) are noted by e, let Γhi denote the set of edges or faces of εhi interior to
Ωi, i = 1, 2, . To each edge or face e of εh we associate once and for all a unit normal vector ne. We set that if
e ∈ Γ12, ne = n12 and if e ∈ Γ2, ne = n2.
We propose the discontinuous Galerkin method. For, we introduce further notation: if the function v is smooth
enough, its trace along any side of one element E is well defined. If two elements E1 and E2 are neighbors
and share one common side e, and the vector ne points from E1 to E2, there are two traces of v along e. We
can add or substruct those values, and we obtain a jump [.] and an average {.} for v.

©UBMA - 2021 
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The discrete problem is set as: Find (u1, p1, p2) ∈ Xh
1 ×Mh

1 ×Mh
2 such that ∀v1 ∈ Xh

1 ,∀q2 ∈Mh
2 , aε1 (u1, v1) + bDG (v1, p1) + aε2 (p2, q2)

+cDG (u1;u1, v1) + γ12 (u1, p2; v1, q2) = LDG (v1, q2)
∀q1 ∈Mh

1 , bDG (u1, q1) = 0
(24)

with

aε1
(
uh1 , v

h
1

)
= 2ν

∑
E∈εh1

∫
E

D(uh1 ).D(vh1 )

−2ν
∑

e∈Γh
1∪Γ1

∫
e

{
D(uh1 ).ne

} [
vh1
]

+2νε1
∑

e∈Γh
1∪Γ1

∫
e

{
D(vh1 ).ne

}
.
[
uh1
]

+J1
(
uh1 , v

h
1

)
,

bDG
(
vh1 , p

h
1

)
= −

∑
E∈εh1

∫
E

ph1∇.vh1 +
∑

e∈Γh
1∪Γ1

∫
e

{
ph1 .ne

}
.
[
vh1
]
,

aε2
(
ph2 , q

h
2

)
=

∑
E∈εh2

∫
E

K∇ph2 .∇qh2 −
∑

e∈Γh
2∪Γ2D

∫
e

{
K∇ph2 .ne

}
.
[
qh2
]

+ε2
∑

e∈Γh
2∪Γ2D

∫
e

{
K∇qh2 .ne

}
.
[
ph2
]

+ J2
(
ph2 , q

h
2

)
,

LDG
(
vh1 , q

h
2

)
=

∫
Ω1

f1.v
h
1 +

∫
Ω2

f2.q
h
2 +

∑
e∈Γ2N

∫
e

gN .q
h
2

+ε2
∑
e∈Γ2D

∫
e

(
K∇qh2 .ne +

σ0
e

|e|
qh2

)
.gD,

cDG
(
uh1 ; vh1 , w

h
)

=
∑
E∈εh1

∫
E

(
uh1.∇vh1

)
.wh +

1

2

∑
E∈εh1

∫
E

∇uh1 .
(
vh1.w

h
)

−1

2 e∈Γh
1∪Γ1

∫
e

([
uh1
]
.ne
)
.
{
vh1 .w

h
}

+E∈εh1

 ∫
∂E\Γ12

{
uh1
}
.nE

(
v
h(int)
1 − vh(ext)

1

)
.wh(int)

 ,
and

γ12

(
uh1 , p

h
2 ; vh1 , q

h
2

)
=

(
ph2 , v

h
1 .n12

)
Γ12

+
1

G

(
uh1 .τ12, v

h
1 .τ12

)
Γ12

−
(
uh1 .n12, q

h
2

)
Γ12
− 1

2

(
uh1 .u

h
1 , v

h
1 .n12

)
Γ12

Mutiphase Flows (F.Z. Nouri)
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3.2. Numerical Results
We have considered a problem coupling Navier-Stokes/Darcy equations and proposed the discontinous galerkin
finite element method, and we obtained local a posteriori error estimations and error indicators of a residual
type [1], [7], [13] and [21]. In Figure 2, we plot the error estimates and indicators for both the continous and
discontinous Galerkin approach and by comparing them, we can deduce that:

• The continous Galerkin method is more stable for this nonlinear coupled problem and takes less CPU
time.

• The discontinous Galerkin method is more realistic for this type of problems.

• Error indicators are more or less of the same order.

Figure 2. Error estimators and indicators

4. SURFASIC AND UNDERGROUND FLOWS IN POROUS MEDIA

4.1. Immiscible fluids
The system of equations for the flow of two immiscible fluid phases is given by the mass conservation equations
combined with the Darcy’s law

Si
∂(Φi)

∂t
+∇.(vi) = qi i = f, s, (25)

vi = −kρig
µi
∇Φi, (26)

The unknowns Φi and vi are the hydraulic load and the fluid velocity. The parameters Si, k, µi, ρi and g are
respectively , the storativity’s coefficient, the soil permeability, the dynamic viscosity, the density and the
gravitational acceleration. The position of the interface can be determined by

h = (1 + δ)Φs − δΦf (27)

where δ =
ρf

ρs−ρf , is the density contrast beween the two fluids.

4.1.1. Simplified model
We consider a confined aquifer (Figure 3), leading to assume that the fresh water is quasi-static to give a system
of partial differential equations of degenerate elliptic-parabolic type. We simplify our system by omiting the
term with Si in (25) to get

α
∂h

∂t
− div(K(x)Ts(h)∇h) + div(K(x)Ts(h)∇Φf ) = −Is, in Ω, (28)

−div (K(x)H2∇Φf ) + div (K(x)Ts(h)∇h) = Is + If , in Ω, (29)

h = hD, Φf = Φf,D on Γ× [0, T ], (30)

©UBMA - 2021 
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h(x, 0) = h0(x) in Ω, (31)

where α is the porosity, K(x) the hydraulic conductivity, H2 the aquifer thickness and Ts(h) = H2 − h, the
salt water zone thickness. The unknowns are the hydraulic load of fresh water Φf and the interface depth h.
the well posedness is proved in Djedaidi et al 2016 [12].

Figure 3. Confined aquifer

4.2. Finite volume approximation
In this section we propose a finite volume scheme to approximate the solutions of the derived simplified model
((28)-(31)). The time interval [0, T [ is divided into finite sub-intervals [tn, tn+1] of length ∆tn, n = 0, ..., M
with t0 = 0 and tM = T. The space domain (the confined aquifer Ω) is discretized by a non-structured stitching
Th as follows.

We introduce the following notation:

• Let |C| denote the cell C surface, N(C) the set of triangles having in common a side with the cell C.

• Let eC,L be the common side of the triangles C and L, −→η C,L be the normal oriented from C towards L.

• −→η ei is the external normal corresponding to the part of ei at the boundary Γ.

• Let Qh be the set of sides of the stitching Th and Q∗h be the set of the interior sides.

• For a given side e, let us denote by N and P the extremities, by W and E the two triangles where
e = W̄ ∩ Ē; by χe the diamond cell associated with e given by connecting the centers of gravities of the
cells W and E with the extremities N and P of e.

•
(

(ε
i
)i=1,4

)
are the four segments forming the border of χe.

• −→η ε = 1

|εi |
(µxi

, µyi) is the normal on ε
i

outgoing of χe.

• For a given node, V (N) is the set of triangles with this node in common.

This is resumed by the more illustrative Figure 4. For more details on finite volume methods see [13].
For the numerical resolution of our simplified system ((28)-(31)), equations (28) and (29) are discretized sepa-
rately.

4.2.1. Numerical Results
We explore the depth of the interface for T = 0, 5, 10 and 20. The numerical results are summarised in Figure
4, showing the evolution in time of the sharp interface between the fluids. Note that the interface shape is
conserved.

Mutiphase Flows (F.Z. Nouri)©UBMA - 2021 
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Figure 4. Depth of the interface for T = 0, 5, 10 and 20

4.3. Miscible Fluids
The study of miscible fluids is motivated by many applications such as oil recovery, problems in hydrogeology,
groundwater pollution and fitration, where there is no sharp interface and fluids can mix freely with each
other. However it is possible that two fluids or liquids are not completely miscible, i.e they can mix until
the concentration reaches a certain saturation. Many authors have studied this phenomenon from different
angles, for example D. Kortweg in 1901 in [17] has induced that the charge of concentration gradients near the
transition zone causes capillary forces between the two fluids. The authors N. Bessov et al in [9], have pointed
out that due to inohomogeneties of concentration, one should take into account the Kortweg stress. This criteria
was first introduced by Kostin et al in [18], where they set their system as the incompressible Navier Stokes
equations.We have also studied miscible fluids coupling concentration and Navier-Stokes equations, see Nouri
et al [4].
The model that describes the movement between two miscible liquids in a porous medium, in a domain Ω ⊂ R2

is given by the system 

∂c
∂t + u.∇c = d4c

∂u
∂t + µ

Ku = −∇p+∇.F (c)
div(u) = 0

∂c
∂η = 0, u.η = 0 on Γ, Ω ⊂ R2

c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω

(32)

where u, p, c are the velocity, the pressure and the concentration, respectively. The coefficients d, µ and K are
the mass diffusion, the viscosity and the permeability of the medium coefficients. Note that

∇.F (c) =

(
∂F11

∂x1

∂F12

∂x2
∂F21

∂x1

∂F22

∂x2

)

where F11 = k( ∂c
∂x1

), F22 = k( ∂c
∂x1

), F12 = F21 = −k( ∂c
∂x1

)( ∂c
∂x2

) with k a positive constant. For more
details on the study of this system the reader is referred to [1] and Assala et al in [12].

5. NUMERICAL DISCRETISATION

For the numerical resolution of the problem (32), we discretise the two first equations separately, by
the finite volume scheme described in previous section. We visualise in figure 4 the concentration for different
times. We conclude that the more dense fluid displaces slowly such that:

• The concentration of salt is diffusing rapidly in time.

• The velocity of water is increasing in the x-direction more than the y-direction, due to our boundary
conditions assumption.

• Due to Archimedes ‘buoyancy principle’, the lighter fluid tend to go upward with appearance of Rayleigh–
Taylor instabilities at the bottom denser layer.

©UBMA - 2021 
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In the case of immiscible fluids, the viscosity and the abrupt interface act as stabilising factors (see Djedaidi
and Nouri [12] and references therein). In miscible fluids in porous media,the stabilising role of interfacial
tension is played by molecular diffusion and also by a reduced density contrast, as a result of a mixing zone.
Therefore, through these illustrative numerical results the classical phenomenon like merging and tip splitting,
are observed.

(a) (b)

Figure 5. Concentration (a) and velocity (b) for t = 1, 3, 5 and 15

6. MATHEMATICS IN MEDICINE

6.1. Stem Cell Problem
The majority of orthopaedics tissues have become targets for cellular therapies, with the repair of cartilage
defects, tendons and intervertebral discs. Usually such therapies introduce cells through local delivery i.e. direct
injection or surgical implantation; however this method is not without limitations, for example inaccessible
locations and multiple sites, the need for repeated dosage and the lack of surgical candidates.

6.2. Requirement and Suggestions
Requirement: Kyrtatos 2009, Huang et al 2010, Riegler et al 2010, Elhaj 2012 [2] wondered about the best
way to:

• Deliver MSCs to their intended site(s) of action.

• Use magnetic labelling : A way to guide MSCs out of the bloodstream

Literature review
Richardson et al 2000 concentrated on the force experienced by the particles in a vessel due to fluid flow and
the externally applied magnetic field, i.e. use Poiseuille.

Grief et al 2005 proposed an advection-diffusion model for motion of magnetic particles in the bloodstream.
From these suggestions many questions arise.

Primary Questions: The primary question put to the study group was to consider whether loading
MSCs with magnetic particles would enable them to be directed to specific sites, deep in the tissue with the
external application of magnets.

Secondary Questions: If the approach is feasible then

1. The optimal number of Super Paramagnetic Iron Oxide particles (SPIOs) in a cell; predicting the propor-
tion of SPIO-loaded cells that reach the target site;

2. how long MSCs take to reach the target site and

Mutiphase Flows (F.Z. Nouri)©UBMA - 2021 
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3. for what length of time external magnets should be used.

For given data by K. Elhadj and L.Kimpton 2012, the magnet against patient’s skin, showing coordinate system,
and the parameter values for magnetic force calculation are shown in Figure 6.
Here we visualise the spatial variation of the magnitude and direction of the force due to the magnet felt by
a single core (see Figures 7), for more details on the analytical solution the reader is referred to the research
report report in https://mmsg.mathmos.net/uk/2012/magnetic-stem-cells/report.pdf . The key things to note are
that the force is always directed towards the magnet and that the magnitude of the force decays rapidly away
from the magnet.

(a) (b)

Figure 6. Coordinate system (a), and the parameter values (b) for magnetic force calculation.

(a) (b)

Figure 7. Magnitude of the force (a), and its direction (b) due to the magnet felt by a single core.

6.3. Proposed Model
First sight: We propose a model taking into account the following two reactions:
* The action of the fluid on the cell is modelled by the hydrodynamic force and torque acting on its surface,
they are used as the right-hand sides of Newton-Euler equations.
* The action of the cell on the fluid can be modelled by no-slip boundary conditions on the cell in the Navier–
Stokes equations.

Inconvenience of this Model
This explicit coupling can be numerically unstable and its resolution often requires very small time steps. In
addition, if we choose to use (for accuracy) the finite element menthod and since the position of the cell evolves
in time, we would have to remesh the computational domain at each time step or in best cases every few time
steps.

©UBMA - 2021 
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6.3.1. Bi-Phasic Model (Fluid-Bubble)
We propose a bi-phasic model assuming that we have two fluids with different densities and viscosities, using
Navier Stokes equations

ρ(φ(x, t))∂tu+ ρ(φ(x, t))(u.∇u)− µ(φ(x, t))∆u+∇p = f , (33)

with

ρ(x, t) =

{
ρf ∀x ∈ Ωf
ρb ∀x ∈ Ωb

, µ(x, t) =

{
µf ∀x ∈ Ωf
µb ∀x ∈ Ωb

(34)

and

ρ(φ) = ρb+(ρf−ρb)H(φ) , µ(φ) = µb+(µf−µb)H(φ) (35)

and the level set method. HereH(φ) denotes the Heaviside function and φ(x, t) is the level set function defined
by  φ(x, t)> 0 ∀x ∈ Ωf

φ(x, t)< 0 ∀x ∈ Ωb
φ(x, t)= 0 ∀x ∈ Γ

(36)

The evolution of the interface Γ at each time t is described by the advection of the level set function φ(x, t)
solution of  ∂tφ+ u∇φ = 0 ∀x ∈ Ω× (0, T )

φ= φin on Σin
φ= φ0 ∀x ∈ Ω at t = 0

(37)

where Σin = {(x, t) ∈ ∂Ω× (0, T ); u.n < 0}. We introduce a relaxation parameter λ (0 ≤ λ ≤ 1) such that
u = λuf + (1− λ)ub, and we use

H(φ) =


0 if φ

|∇φ| < −ε
1
2 (1 + 1

ε
φ
|∇φ| + 1

π sin(πε
φ
|∇φ| )) if − ε ≤ φ

|∇φ| ≤ ε
1 if φ

|∇φ| > ε

(38)

where [−ε, ε] is the thickness of the interface between the fluid and the cell. Note that the heaviside function
H(φ) does not depend on φ but on φ

|∇φ| as an approximation of the distance function in the neighbourhood of
the interface.

6.4. Numerical Results
In this section we present some numerical solutions for a simple model of a cell in a blood vessel in the presence
of a magnetic eld. The position and deformation of the cell not only depends on the interaction between the
flow and the cell, which are quite complex in such a geometry, but also on the initial position of the cell(s).
In the same way as in the previous applications, we use a finite element scheme to solve ((33)-(38)) using the
following algorithm.

Input f (Magnetic Field force) and the disctretisation parameters
Update ρ(φ) and µ(φ)
Solve the Navier Stokes equation (33)
Use the velocity u of Navier Stokes Equation to advect φ from (37),

and get the following results:
Case 1. Low Magnet Effect, λ = 0.35, it is clearly shown in Figure 8 that the cell is pushed straight to the
end of the domain by the blood and slightly pulled down in the middle part of the domain by the magnet.
Case 2. High Magnet Effect, λ = 0.85, as shown in Figure 9, we can notice that in addition to the the blood
effect pushing, the magnet is pulling the cell.
Case 3. Two Cells with low Magnet Effect, λ = 0.35, in this last numerical experiment we noticed numerical
unstable behaviour, the two cells are pushing each other in addition to the blood effect and the cell motion, as
shown in Figure 10.
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The numerical results in this section prove a possible framework for numerical simulations of cell motion
through the bloodstream in the presence of a magnet (see Figures 8,9 and 10). The interface Γbetween cell and
blood is clearly seen to diffuse at some of the later time points and there is some pinching of the cell under the
influence of strong magnets (see Figure 9). Modelling could be useful in determining how strong a magnetic
force would need to be to have a sufficient effect on this process. Another interesting problem concerns how
loading cells with magnetic particles in instigates their strolling motion.

Figure 8. Low Magnet Effect for one cell, λ = 0.35

Figure 9. High Magnet Effect for one cell, λ = 0.35

Figure 10. Low Magnet Effect for two cells, λ = 0.35

7. CONCLUSION

Through these different applications, we show how mathematical modelling can be of a great use. By
studying a real problem, we first learn new skilsl and try to seek and develop new methods and approaches
leading to solutions in a record time, helping experimentalists to understand complex phenomena.
We can also refer to [6] for some userful results solving a real problem in cardiology and [10] for a problem in
pharmacolgy.
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[9] Bessonov, N., Volpert, V.A., Pojman, J.A. and Zoltowski, B.D. (2005) ‘Numerical simulations of con-
vection induced by Korteweg stresses in miscible polymermonomer systems’, Microgravity Science and
Technology, Vol. 17, pp.8–12.

[10] Bram G. Sengers, Sean McGinty, Fatma Z. Nouri, Maryam Argungu, Emma Hawkins, Aymen
Hadji, Andrew Weber, Adam Taylor & Armin Sepp, Modeling bispecific monoclonal antibody in-
teraction with two cell membrane targets indicates the importance of surface diffusion, mAbs, 8:5,
DOI:10.1080/19420862.2016.1178437, 2016, pp.905-915.

[11] M. Discacciati, A, Quarteroni. Navier-Stokes-Darcy coupling : Modeling, Analysis and numerical ap-
proximation, Rev. Mat. Complut, 2009, Vol 22(2), pp. 315-426.

[12] N. Djedaidi, F. Z. Nouri, A study for flow interactions in heterogeneous porous media, Comm. in Opti-
mistion Therory, Article ID 8 (7 June 2016), pp.1-11.

[13] M.L. Hadji, A. Assala and F.Z. Nouri, A posteriori error analysis for Navier–Stokes equations coupled
with Darcy problem, Calcolo, Issue 4/2015, pp. 559-576.

[14] F. Hecht, O. Pironneau. FreeFem++, see www.freefem.org.
[15] S. Gasmi and FZ Nouri,
[16] S. Gasmi and F.Z. Nouri, Numerical simulation for two-phase flow in a porous medium, Gasmi and Nouri

Boundary Value Problems (2015) 2015:7 DOI 10.1186/s13661-014-0256-6.
[17] Korteweg, D. (1901) ‘Sur la forme que prennent les équations du mouvement des fluides si l’on tient
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